Clique and chromatic number of circular-perfect graphs
نویسندگان
چکیده
A main result of combinatorial optimization is that clique and chromatic number of a perfect graph are computable in polynomial time (Grötschel, Lovász and Schrijver 1981). Circular-perfect graphs form a well-studied superclass of perfect graphs. We extend the above result for perfect graphs by showing that clique and chromatic number of a circularperfect graph are computable in polynomial time as well. The results strongly rely upon Lovász’s Theta function.
منابع مشابه
Intersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملA note on the circular chromatic number of circular perfect planar graphs
Computing the circular chromatic number of a given planar graph is NP-complete, as it is already NP-complete to compute its chromatic number. In this note, we prove that the circular clique number of a planar graph, and therefore the circular chromatic number of a circular perfect graph, is computable in O(ne) time; outerplanar graphs are circular perfect.
متن کاملClaw-free circular-perfect graphs
The circular chromatic number of a graph is a well-studied refinement of the chromatic number. Circular-perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This paper studies claw-free circular-perfect graphs. First we prove that ifG is a connected claw-free circular-perfect graph with χ(G) > ω(G), then min{α(G), ω(G)} = 2. We use this resu...
متن کاملInteger round-up property for the chromatic number of some h-perfect graphs
A graph is h-perfect if its stable set polytope can be completely described by nonnegativity, clique and odd-hole constraints. It is t-perfect if it furthermore has no clique of size 4. For every graph G and every c ∈ Z (G) + , the weighted chromatic number of (G, c) is the minimum cardinality of a multi-set F of stable sets of G such that every v ∈ V (G) belongs to at least cv members of F . W...
متن کاملCircular perfect graphs
For 1 ≤ d ≤ k, let Kk/d be the graph with vertices 0, 1, · · · , k − 1, in which i ∼ j if d ≤ |i − j| ≤ k − d. The circular chromatic number χc(G) of a graph G is the minimum of those k/d for which G admits a homomorphism to Kk/d. The circular clique number ωc(G) of G is the maximum of those k/d for which Kk/d admits a homomorphism to G. A graph G is circular perfect if for every induced subgra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 36 شماره
صفحات -
تاریخ انتشار 2010